

STAND: OKTOBER 2020

SEITE 1

PHYSIK ALS ERGÄNZUNGSFACH

Themenbereich: Elektrische und magnetische Felder

Inhaltliche Kompetenzen • Kerncurriculum Stunden • Pflichtergänzung • freiwillige Ergänzung		Prozessbezogene Kompetenzen für Kurse auf erhöhtem Niveau	Unser Unterricht	Buch Dorn Bader Gymnasium SII 12/13
36	Elektrizität	Erkenntnis, Kommunikation, Bewertung	Methoden, Experimente, Arbeitsformen, Material	Seite, Inhalt
	Die Schülerinnen und Schüler	Die Schülerinnen und Schüler		
2	beschreiben elektrische Felder durch ihre Kraftwirkungen auf geladene Probekörper.	skizzieren Feldlinienbilder für typische Fälle.	Feldlinienmodell	 S.10/11: Elektrische Ladungen und Stromstärke, Ladungstransport S.12/13: Elektrisches Feld S. 34/35: Elektrische Felder in Natur, Forschung und Technik
2	nennen die Einheit der Ladung und erläutern die Definition der elektrischen Feldstärke.	werten in diesem Zusammenhang Messreihen aus.	Kondensatorplatten mit Kraftsensor/Feinwaage oder bifilar aufgehängter Metallkugel (Pendel)	S.14: Elektrische Feldstärke S.15: Messungen zur elektrischen Feldstärke
6	 beschreiben den Zusammenhang zwischen Ladung und elektrischer Stromstärke. nennen die Definition der elektrische Spannung mithilfe der pro Ladung übertragbaren Energie. beschreiben den Zusammenhang zwischen der Feldstärke in einem Plattenkondensator und der anliegenden Spannung. 	 ziehen Analogiebetrachtungen zur Erläuterung dieses Zusammenhangs heran. bestimmen die Geschwindigkeit eines geladenen Körpers im homogenen elektrischen Feld eines Plattenkondensators mithilfe von Energiebilanzen. 	Elektrofeldmeter Versuche mit dem Plattenkondensator	 S. 10: Strom und Ladung S. 16-21: Spannung und Energie S. 30-33: Bewegung von Ladungsträgern in elektrischen Feldern.
6	beschreiben qualitativ den Entladevorgang eines Kondensators mithilfe exponentieller Eigenschaften	begründen und erläutern den exponentiellen Verlauf.	Cassy Lab Versuch	S. 26-29: Auf- und Entladung von Kondensatoren.
3	nennen die Definition der Kapazität eines Kondensators.	erläutern Einsatzmöglichkeiten von Kondensatoren als Energiespeicher in technischen Systemen.	Versuche mit dem Plattenkondensator	S. 22-25: Kapazität von Kondensatoren

FACHCURRICULUM ERGÄNZUNGSFACH PHYSIK

SEITE 2

STAND: OKTOBER 2020

6	 bestimmen die Richtung von magnetischen Feldern mit Kompassnadeln. ermitteln Richtung (Dreifingerregel) der Kraft auf einen stromdurchflossenen Leiter im homogenen Magnetfeld. erläutern die Entstehung der Hallspannung. nennen die Definition der magnetischen Flussdichte B (Feldstärke B) in Analogie zur elektrischen Feldstärke. 	 skizzieren Magnetfeldlinienbilder für einen geraden Leiter und eine Spule. planen mit vorgegebenen Komponenten ein Experiment zur Bestimmung von B auf der Grundlage einer Kraftmessung. leiten die Gleichung für die Hallspannung unter Verwendung der Ladungsträgerdichte anhand einer geeigneten Skizze her. führen selbstständig Experimente zur Messung von B mit einer Hallsonde durch. führen ein Experiment zur Bestimmung von B durch und werten es aus. begründen die Definition mithilfe dieser Messdaten. 	Versuche mit der Leiterschaukel Stromwaage (Gerät oder Kraftsensor und Leiterschleifen ggf. Cassy Lab) Gerät zum Halleffekt Versuche mit Hallsonde + Spulen	S. 40-43: Magnetische Flussdichte und Lorentzkraft S. 46-51 Halleffekt und Messung magnetischer Flussdichten
5	 beschreiben die Bewegung von freien Elektronen unter Einfluss der Lorentzkraft, beschreiben das physikalische Prinzip zur Bestimmung der spezifischen Ladung von Elektronen mithilfe des Fadenstrahlrohres. 	 begründen den prinzipiellen Verlauf der Bahnkurven. Wenden die Gleichung für die Bahnkurve in homogenen elektrischen und magnetischen Feldern an bestimmen die spezifische Ladung des Elektrons 	 Elektronenablenkröhre Aufbau zum Wien-Filter Fadenstrahlrohr 	 S. 52/53: Elektrische Ladungen in magnetischen Feldern S. 54-57: Wien-Filter + Exkurs + Abiturvorbereitung S. 58/59 Anwendungen in Natur und Technik
6	beschreiben die Erzeugung einer Induktionsspannung durch die zeitliche Änderung von <i>B</i> bzw. <i>A</i> qualitativ.	führen einfache qualitative Experimente zur Erzeugung einer Induktionsspannung durch.	Versuche zur Induktion, Induktionsspulen + Dreiecksstrom, Cassy Lab	S. 64/66: Grundversuche zur Induktion + Induktion in Leiterschleifen

SEITE 3

STAND: OKTOBER 2020

Themenbereich: Schwingungen und Wellen

Inha	Itliche Kompetenzen • Kerncurriculum • Pflichtergänzung • freiwillige Ergänzung	Prozessbezogene Kompetenzen für Kurse auf erhöhtem Niveau	Unser Unterricht	Buch (Dorn Bader)
37	Schwingungen und Wellen	Erkenntnis, Kommunikation, Bewertung	Methoden, Experimente, Arbeitsformen, Material	Seite, Inhalt
	Die Schülerinnen und Schüler	Die Schülerinnen und Schüler		
6	 stellen harmonische Schwingungen grafisch dar. beschreiben harmonische Schwingungen mithilfe von Amplitude, Periodendauer und Frequenz. 	 verwenden die Zeigerdarstellung oder Sinuskurven zur grafischen Beschreibung. haben Erfahrungen im selbstständigen Umgang mit einem registrierenden Messinstrument (z.B. Oszilloskop / Interface). 	 Fadenpendel Federschwinger Cassy Lab, Bewegungssensor 	 S. 86-89: Mechanische Schwingungen beschreiben
10	 geben die Gleichung für die Periodendauer eines Feder-Masse-Pendels an. beschreiben die Schwingung eines Feder-Masse-Pendels mithilfe von Energieumwandlungen. beschreiben die Bedingungen, unter der bei einer erzwungenen Schwingung Resonanz auftritt. beschreiben den Aufbau eines elektromagnetischen Schwingkreises. 	 untersuchen die zugehörigen Abhängigkeiten experimentell. ermitteln geeignete Ausgleichskurven. übertragen diese Verfahren auf andere harmonische Oszillatoren. deuten in diesem Zusammenhang die zugehörigen ts-Diagramme und t-v-Diagramme erläutern den Begriff Resonanz anhand eines Experimentes beschreiben in Analogie zum Feder-Masse-Pendel die Energieumwandlungen in einem Schwingkreis qualitativ. ermitteln in Abhängigkeit der Frequenz der Eigenschwingung von der Kapazität experimentell anhand eines Resonanzversuchs. 	 Federschwinger Cassy Lab + Bewegungssensor Pohlsches Rad Cassy Lab + Power Cassy 	 S. 90-93 Feder-Masse-Pendel S. 94/95 Zeigerformalismus S. 96/97 Fadenpendel S. 98-101 Resonanz S. 102-107 Elektrisches Schwingkreis S. 108-111 Angeregte Schwingungen und RFID
5	 beschreiben die Ausbreitung harmonischer Wellen. beschreiben harmonische Wellen mithilfe von Periodendauer, 	verwenden Zeigerketten oder Sinuskurven zur grafischen Darstellung.	Wellenmaschine Cassy Lab	 S. 116-119: Wellen – ein Naturereignis S. 120-127: Beschreibung von Wellen

FACHCURRICULUM ERGÄNZUNGSFACH PHYSIK

STAND: OKTOBER 2020

SEITE 4

4	Ausbreitungsgeschwindigkeit, Wellenlänge, Frequenz, Amplitude und Phase. • begründen den Zusammenhang zwischen Wellenlänge und Frequenz und wenden die zugehörige Gleichung an. • vergleichen longitudinale und transversale Wellen.	 begründen diesen Zusammenhang mithilfe der Zeigerdarstellung oder der Sinusfunktion. wenden die zugehörige Gleichung an. 	Schraubenfedern Experimente mit Polfiltern	S. 128-133: Polarisation
	beschreiben Polarisierbarkeit als Eigenschaft transversaler Wellen.	stellen Bezüge zwischen dieser Kenntnis und Beobachtungen an einem LC-Display her.		
12	 beschreiben und deuten Interferenzphänomene für folgende "Zwei-Wege-Situationen": stehende Welle, Doppelspalt und Gitter, Michelson-Interferometer beschreiben ein Experiment zur Bestimmung der Wellenlänge von Schall mit zwei Sendern 	 verwenden die Zeigerdarstellung oder eine andere geeignete Darstellung zur Beschreibung und Deutung. erläutern die technische Verwendung des Michelson-Interferometers zum Nachweis kleiner Längenänderungen. erläutern die Veränderung des Interferenzmusters beim Übergang vom Doppelspalt zum Gitter. 	 Experimentierset Mikrowellen Kundtsches Rohr, Quinksches Rohr Experimente mit Mikrofon und Lautsprechern/Frequenzgen erator Doppelspalt/Gitter (Schullaser/diverse Laserpointer) 	 S. 134-139: Interferenzphänomene S. 140-143: Stehende Wellen S. 144-155: Interferenz an Doppelspalt und Gitter S. 156-159 Michelson-Interferometer

Klausuren: 1. Halbjahr (Q3) 1 Klausur (90 Minuten)

2. Halbjahr (Q4) 1 Klausur (90 Minuten)

Leistungsbewertung: 50:50 (schriftliche Leistungen : mündliche Leistungen)

Kursthemen: Q3 Elektrische und magnetische Felder

Q4 Schwingungen und Wellen