SEITE 1

Das Fachcurriculum für den Physikunterricht am Gymnasium Wildeshausen für die Schuljahrgänge 5-10 basiert auf dem Kerncurriculum für das Gymnasium Schuljahrgänge 5-10 Naturwissenschaften

Herausgegeben vom Niedersächsischen Kultusministerium, Schiffgraben 12, 30159 Hannover. Das Kerncurriculum kann als "PDF-Datei" vom Niedersächsischen Bildungsserver (NIBIS) unter http://db2.nibis.de/1db/cuvo/datei/nw_gym_si_kc_druck.pdf heruntergeladen werden.


Bildungsbeitrag des Faches Physik:

Im Physikunterricht erfahren die Schülerinnen und Schüler beispielhaft, in welcher Weise und in welchem Maße ihr persönliches und das gesellschaftliche Leben durch Erkenntnisse der Physik mitbestimmt werden. Der Aufbau eines physikalischen Grundverständnisses in ausgewählten Bereichen ermöglicht ihnen, Entscheidungen und Entwicklungen in der Gesellschaft im Bereich von Naturwissenschaft und Technik begründet zu beurteilen, Verantwortung beim Nutzen des naturwissenschaftlichen Fortschritts zu übernehmen, seine Folgen abzuschätzen sowie als mündige Bürger auch mit Experten zu kommunizieren.

Kompetenzen:

Im Kerncurriculum werden inhaltsbezogene und prozessbezogene Kompetenzbereiche ausgewiesen. Verknüpfung Die beider Kompetenzbereiche muss geleistet werden. Die prozessbezogenen Kompetenzbereiche beziehen sich auf Verfahren, die von Schülerinnen und Schülern verstanden und beherrscht werden sollen, um Wissen anwenden zu können. Sie umfassen diejenigen Kenntnisse Fähigkeiten und Fertigkeiten, die einerseits die Grundlage, andererseits das Ziel für Erarbeitung und Bearbeitung der inhaltsbezogenen die Kompetenzbereiche sind. Die inhaltsbezogenen Kompetenzbereiche sind fachbezogen; es wird bestimmt, über welches Wissen die Schülerinnen und Schüler im jeweiligen Inhaltsbereich verfügen sollen. Die folgende Grafik veranschaulicht diesen Sachverhalt.

Die inhaltsbezogenen Kompetenzen untergliedern sich in die Themenbereiche Energie, Thermodynamik, Magnetismus, Elektrizität, Mechanik, Optik und Kernphysik. Der Energiebegriff dient als themenübergreifende Leitlinie.

SEITE 2

Die prozessbezogenen Kompetenzen unterteilen sich in die folgenden Bereiche:

1) Erkenntnisgewinnung

Physikalisch argumentieren

Physikalische Argumentation wächst über einen unverbindlichen Meinungsaustausch hinaus, indem zunächst ein sachbezogenes Vokabular entwickelt wird. Vorliegende Fragen und Vermutungen werden durch Anwendung weiterer Darstellungselemente, insbesondere von Grafen, sprachlichen Formulierungen von Zusammenhängen und schließlich Gleichungen sowie durch die Durchführung hypothesengeleiteter Experimente einer rationalen Beantwortung zugänglich gemacht. Besondere Aufmerksamkeit verdient der allmähliche Übergang von der Alltagssprache zur Fachsprache, der Wechsel zwischen Darstellungen und Sprachebenen muss dabei geübt werden. Der beschriebene Weg muss in jedem neu begonnenen Sachgebiet erneut durchlaufen werden, die Angabe eines Endverhaltens bedeutet also nicht, dass die zum Erwerb des Endverhaltens erforderlichen Schritte bei fortgeschrittenen Lernenden entbehrlich wären.

Probleme lösen

Die Fähigkeit, Probleme zu lösen, ist sehr anspruchsvoll. Sie entwickelt sich nur, wenn die Lernenden sich bei der Problemlösung immer wieder als erfolgreich erleben. Zur Unterstützung der Entwicklung dieser Fähigkeit können genaue Anleitung und feste Strukturierung hilfreich sein, wenn die Probleme aus Sicht der Lernenden neuartig oder komplex sind. Offene Problemstellungen können eher in bekannten Zusammenhängen für Schülerinnen und Schüler eine angemessene Herausforderung darstellen. Für die Gestaltung von Unterricht ergibt sich daraus die Forderung nach einem kumulativen Aufbau auch in den einzelnen Unterrichtseinheiten mit zunehmender Öffnung bei wachsendem Kenntnisstand.

Planen, experimentieren, auswerten

Wie die Problemlösefähigkeit muss auch die Experimentierfähigkeit entwickelt werden. In einem neuen Sachgebiet sollten die Lernenden in der Regel zunächst angeleitet experimentieren. Mit zunehmender Sicherheit dürfen Fragestellungen und Anleitungen schrittweise offener werden, um in einem anderen Sachgebiet zunächst wieder verengt zu werden. Sie sind dabei stets so zu gestalten, dass die Lernenden Experimente als Mittel erleben, wesentliche Fragen zu beantworten oder neue Phänomene kennen zu lernen. Arbeitsaufträge müssen so angelegt sein, dass die Lernenden den erlebten Erfolg in erster Linie dem eigenen Tun zuschreiben können.

Mathematisieren

Die Physik unterscheidet sich von den anderen Naturwissenschaften unter anderem durch ihren höheren Grad der Mathematisierung. Es ist Aufgabe des Unterrichts, die Lernenden auf dem Weg zu einer Beherrschung mathematischer Verfahren in der Physik schrittweise und behutsam anzuleiten. Behutsames Vorgehen bedeutet dabei, einen Weg über eine sprachliche Beschreibung und einfache Diagramme bis zur Verwendung von Gleichungen und deren anschließender Interpretation zu beschreiten. In jedem Fall wird dabei der Weg über eine sprachliche Beschreibung und einfache Diagramme

STAND: OKTOBER 2020

SEITE 3

zur Angabe von Gleichungen und deren anschließender Interpretation führen. Obwohl in der nachstehenden Tabelle in Form jeweils komplexer werdender Kompetenzen ein Endverhalten beschrieben wird, müssen die Lernenden die erforderlichen Schritte in einem neuen Fachgebiet jeweils wieder neu und wiederholt durchlaufen. Termumformungen und das Lösen von Gleichungen sind nur dann Gegenstand der Physik, wenn sie dazu dienen, physikalische Fragen zu beantworten.

Mit Modellen Arbeiten

Physikalische Probleme werden durch Modellieren und Idealisieren einer Behandlung zugänglich gemacht. Modelle können dabei gegenständlich, ikonisch, grafisch, mathematisch sein oder Analogien verwenden. Das Kern-Hülle-Modell des Atoms, das Modell der Elementarmagnete und das im Chemieunterricht eingeführte Teilchenmodell werden im Sinne von ikonischen Modellen, Energieflussdiagramme als Beispiel für grafische Modelle verwendet. An Beispielen erkennen die Lernenden die Prognosefähigkeit von Modellen und deren Grenzen. Erst fortgeschrittene Lernende sind dabei in der Lage, über die Unterschiede zwischen Modell und Realität zu reflektieren.

2) Kommunizieren und dokumentieren

Kommunizieren

Schülerinnen und Schüler müssen Äußerungen von anderen und Texte mit physikalischen Inhalten verstehen, sich zu eigen machen und überprüfen. Sie nehmen dazu Informationen auf, strukturieren diese und dokumentieren ihre Arbeit, ihre Lernwege und ihre Ergebnisse. Dabei nutzen sie unterschiedliche Darstellungsformen und Medien. Zunehmend achten die Lernenden auf eine adressatengerechte Darstellung und die Auswahl geeigneter Sprachelemente. Eine besondere Bedeutung kommt der Dokumentation von Lösungswegen dann zu, wenn elektronische Rechenhilfen benutzt werden.

Dokumentieren

Wesentliches Kriterium für die Anerkennung naturwissenschaftlicher Ergebnisse ist deren Reproduzierbarkeit. Das setzt eine geeignete Form der Dokumentation voraus. Im Unterricht gelangen die Lernenden zu einer zunehmend selbständig ausgeführten, situations- und adressatengerechten Darstellungsform, ohne in eine ritualisierte Art des Protokolls zu verfallen. Zur Dokumentation gehört die schrittweise genauer eingehaltene Verwendung von Größensymbolen, Einheiten und Schaltzeichen. Ebenso entwickelt werden soll die Fähigkeit, Lernergebnisse und Kenntnisstand in geeigneter Form übersichtlich darzustellen und so eine Basis für künftiges Lernen bereitzustellen.

3) Bewerten

Zum Bewerten gehört die Fähigkeit, das erworbene Wissen kritisch einordnen zu können, ebenso wie die Beantwortung der Frage, in welchem Gebiet die Physik Aussagen machen kann und in welchem nicht. Insofern ist es unumgänglich, dass die Lernenden zwischen naturwissenschaftlichen,

SEITE 4

STAND: OKTOBER 2020

gesellschaftlichen und politischen Komponenten einer Bewertung unterscheiden. Im Zusammenhang mit Fragen der Nachhaltigkeit, der Auswirkungen technischer Anwendungen und der Gesundheit entwickeln die Lernenden dabei auch Ansätze für Wertmaßstäbe. Die Gelegenheiten, Bewertungskompetenz im Physikunterricht zu entwickeln, sind allerdings begrenzt und zugleich komplex. Deshalb sind die Anlässe gezielt zu nutzen. Die Erwartungen an die Progression müssen realistisch eingeschätzt werden, weil die zur Entwicklung erforderlichen Schritte nur selten durchlaufen werden können.

Stundentafel und Schulbuch:

Am Gymnasium Wildeshausen wird das Fach Physik in den Jahrgängen 5-10 unterrichtet. Der Physikunterricht wird im Jahrgang 5 zweistündig, im Jahrgang 7 einstündig und in den Jahrgängen 8-10 zweistündig erteilt. Im Jahrgang 6 gibt es keinen Physikunterricht. In den Jahrgängen 5-10 wird nach dem Lehrwerk "Dorn-Bader Physik *Gymnasium*" vom Schroedel Verlag unterrichtet. Das Lehrwerk beinhaltet Internetverweise mit zusätzlichen Aufgaben, Simulationen und Ergänzungstexten.

Zusammenarbeit, Klassenarbeiten:

Die Physiklehrerinnen und –lehrer eines Jahrgangs arbeiten möglichst parallel, so dass durch gemeinsame Arbeitsblätter, vereinbarte Schreibweisen, ähnliche Experimente und Projekte ein einheitlicher Kenntnisstand aller Schüler erreicht wird. Auch bei einem außerplanmäßigen Lehrerwechsel kann so eine Kontinuität im Unterricht gewährleistet werden. Ebenso ist es sinnvoll Klassenarbeiten gemeinsam zu planen.

Methodencurriculum:

Im Fach Physik werden die im Methodencurriculum des Gymnasiums Wildeshausen festgelegten Methoden gelehrt und trainiert.

Struktur des Fachcurriculums:

Gemäß den Aufgaben, die der Fachkonferenz unter Punkt 2.3 der Kerncurriculums zugewiesen wurden, hat die Fachschaft Physik die Anordnung der verbindlichen Themenbereiche auf die einzelnen Jahrgänge vorgenommen.

In einer tabellarischen Übersicht findet man für jeden Jahrgang zunächst in einer Spalte die inhaltlichen Kompetenzen, die Pflichtthemen nach dem Kerncurriculum, vereinbarte verpflichtende Ergänzungen sowie bei ausreichender Zeit freiwillige Ergänzungen enthalten. Man findet ebenso einen groben Überblick über die zu unterrichtenden Stunden. In einer zweiten Spalte findet man die Verknüpfung mit den verbindlichen prozessbezogenen Kompetenzen unterteilt in "Erkenntnisgewinnung", "Kommunikation" und "Bewertung". In einer dritten Spalte findet man konkrete Hinweise für die mögliche Durchführung des Unterrichts, d.h. es werden mögliche Methoden, Arbeitsformen sowie Experimente zu dem jeweiligen Thema genannt. Hier findet man auch Tipps zu den Einsatzmöglichkeiten des GTR, Excel und Simulationssoftware. Ebenso findet man Hinweise zu verfügbarem Material in der Physiksammlung (Schülerexperimentiermaterial, Lernstationen, Material für Demonstrationsexperimente, etc.) und im Internet. In der vierten Spalte findet den den entsprechenden Seiten und Aufgaben Schulbuch. man Bezug zu aus dem

JAHRGANG 5 SEITE 5

JAHRGANG 5

Die Schülerinnen und Schüler des Jahrgangs 5 haben zum ersten Mal das Fach Physik. Ihre Vorerfahrungen mit naturwissenschaftlichen Themen sind aufgrund der verschiedenen Grundschulen durchaus unterschiedlich. Ziel des Unterrichts in diesem Jahrgang ist es, die Neugierde der Schüler auf physikalische Themen zu wecken und ihre Begeisterung für naturwissenschaftliche Phänomene zu fördern. Der Unterricht sollte daher sehr anschaulich sein. Ebenso sollte er vom Erfahrungsbereich sowohl der Mädchen als auch der Jungen ausgehen und an ihren Interessenlagen orientiert sein. Das Experiment als Mittel der Erkenntnisgewinnung steht im Mittelpunkt. Die Schüler sollen kleine Experimente nach Anleitung durchführen und auswerten können. Auf eine sorgfältige Dokumentation der Versuche ist besonders zu achten. Das Anfertigen einfacher Skizzen und Schaltbilder ist zu trainieren. Eine Mathematisierung von Zusammenhängen soll noch nicht erfolgen. Vielmehr sollen Zusammenhänge in "Je-desto-Sätzen" sowie mit Hilfe von geometrischen Darstellungen beschrieben werden. Fach- und Umgangssprache werden noch nicht präzise getrennt.

Als Arbeitsformen bieten sich Partner- und Gruppenarbeiten an, wobei hierbei auch der Umgang mit Kritik erlernt werden soll. Arbeitsergebnisse sollen in altersgemäßer Form, auch mit Hilfe vorgegebener Medien präsentiert werden. Die Durchführung und Präsentation zweier mehrstündiger Unterrichtsprojekte soll erfolgen.

THEMENBEREICH: MAGNETISMUS

Inha	Ittliche Kompetenzen • Kerncurriculum • Friedenbergebesseng • freiwillige Ergänzung	Prozessbezogen	e Kompetenzen		Unser Unterricht		Buch
15	Dauermagnete	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
1	Wirkung eines Magneten auf verschiedene Gegenstände und Klassifizierung von Stoffen	Experimente nach Anleitung durchführen	Versuchsprotokoll		In Teams erforschen die SuS was magnetisch ist.	Kiste mit vielen Gegenständen	45
2	Phänomene des Magnetismus aus dem Alltag erklären	Phänomene finden, beschreiben und erklären, Nutzen von Magneten erkennen	Teamarbeit, Dokumentation	Bedeutung einfacher technischer Systeme für das Leben im Alltag, Sicherheitsregeln	Kühlschranktür, Magnettürschließer, Pinnwand, EC-Karte, Sicherung von Kleidung, Magnetschlösser, Lautsprecher	Magnetkartenleser, Kleidungssicherung	44
4	Projekt: Bau von Geräten mit Magneten	Aufbau planen und durchführen Konstruktionsprobleme erfahren und lösen	Gruppenarbeit Arbeitsteilung Vorstellung der Ergebnisse	Bewerten anderer Projekte SuS erfahren selbst Bewertung	Spiele, Mülltrennung, Münzautomat, Elektromagnet, Magnettheater		
1	Kraftwirkung, Nord- und Südpol und Untrennbarkeit der Magnetpole	beschreiben und führen entsprechende Experimente durch					46-48
1	Magnetfelder, Feldlinien	Experimente		Vor- und Nachteile	Feldlinienbilder mit Kompass und	Schülerexperiment	52-53

STAND: OKTOBER 2020

SEITE 6

Jahrgang 5

		durchführen		von physikalischen	Eisenfeilspäne herstellen	mit Eisenfeilspäne,	
		Mit Modellen arbeiten		Modellen erkennen	Experiment: schwimmende Nadel	Minikompass	
1	Die Erde als Magnet	Unterscheidung zwischen geographischen und magnetischen Polen	Vortrag üben	Daten im Internet sammeln	Referat eines Schülers, Internetrecherche, Schutz vor kosmischer Strahlung erkennen, Polarlichter	Folien	52-53
1	Aufbau und Funktion eines Kompasses	Experimentieren	Beschreiben die Anwendung des Kompasses zur Orientierung	Benennen Auswirkungen dieser Erfindung in historischen und gesellschaftlichen Zusammenhängen (Seefahrer, Entdeckungen)	Bau eines Wasserkompasses, Referat Funktion und Einsatz eines Kompasses, Wagenscheins Säge		52, 54-55
1	Modell der Elementarmagnete	Modell zur Erklärung von Phänomenen			Die Schüler sollen erkennen, dass ein Modell zur Erklärung von Phänomenen geeignet ist, und man damit neue Phänomene vorhersagen kann.	Magnettafel mit drehbaren Elementarmagneten	50-51, 57
2	Anwendung des Modells der Elementarmagnete	Experimente durchführen	Dokumentation der Versuche		Es werden Experimente zur Magnetisierung und Entmagnetisierung durchgeführt.		50-51
1	Bau eines Elektromagneten	Erklärung der Verstärkung durch einen Eisenkern im Modell		Vergleich zwischen Dauermagnet und Eletromagnet		großer Eisennagel, Rosendraht, Flachbatterie	58
2	Orientierung bei Tag und Nacht / Orientierung in der Natur	Zusammenhänge erkennen		Daten sammeln, bewerten und zusammenstellen	Gruppenarbeit im Internet zum Thema Tauben (Vögel), moderne Navigation (GPS)		
1	Zusammenfassung der Themen				Buch: Zusammenfassung + Aufgaben		62, 64-65

THEMENBEREICH: PHÄNOMENORIENTIERTE OPTIK

Inha	Kerncurriculum	Prozessbezogen	e Kompetenzen		Unser Unterricht		Buch
30	Optik	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
2	Sender-Empfänger-Vorstellung des Sehens		Unterscheidung zwischen	Bedeutung der Beleuchtung im	Arbeitsblatt Demonstrationsexperiment		68-72

Gymnasium Wildeshausen

STAND: OKTOBER 2020

Jahrgang 5

_	_
CLITE	1
JEHE	1

	Lichtquellen und beleuchtete Körper		Alltagssprache und Fachsprache	Straßenverkehr			
2	Ausbreitung: Lichtbündel → Lichtstrahl als Modell	Modellbildung			Schülerversuch, Simulation Crocodile Physics	Lichtbox	73
4	Anwendung: Schatten, Mondphasen, Finsternisse	Unterscheidung von Mondphasen und Finsternissen			Schülerversuche, Arbeitsblätter, Tellurium, Schulbuch, Internet	Lichtbox Modell zu den Mondphasen	73 76-83
4	Lochkamera	Helligkeit, Bildschärfe	Je-desto-Sätze		Selbstbau einer Lochkamera, verbesserte Lochkamera evtl. Fotografieren	Pringles-Dosen	88-91
1	Sammellinse, (Zerstreuungslinse)	Experimente nach Anleitung, Brennpunkte	Versuchsprotokoll		Lochkamera → Linsenkamera	100 Jahre Fotoapparat Kamera-Museum	92
4	Bildentstehung an der Sammellinse	Unterschiede der Bilder, reelles und virtuelles Bild, Konstruktion mit ausgewählten Strahlen	Je-desto-Sätze		Schülerversuche dynamische Arbeitsblätter (Simulationen)	Optikkästen (neu + alt)	93-95
2	Auge, Kamera, etc.	Funktion erklären, Fehlsichtigkeiten korrigieren			Hier kann die Korrektur von Kurz- und Weitsichtigkeit thematisiert werden.	Modell: Auge	96-99
4	Lichtbrechung		Versuchsprotokoll Je-desto-Sätze		Schülerversuche	Optikkästen Crocodile Physics	100-105
3	Reflexion, Spiegelbilder	geometrische Konstruktion	Versuchsprotokoll Je-desto-Sätze		Schülerversuche, optische Täuschungen	Optikkästen Crocodile Physics	84-87
3	Farbenlehre, Zerlegung von weißem Licht additive und subtraktive Farbmischung	Experimente nach Anleitung	Spektrale Zerlegung beschreiben	Bedeutung von farbigem Licht im Alltag einschätzen	Lehrerversuch mit Prisma Schülerversuche mit Farbbällen	Toms Internetseiten Gerät zur additiven Farbmischung	106-111
1	Zusammenfassung der Themen				Buch: Zusammenfassung + Aufgaben		116-119

THEMENBEREICH: ELEKTRIZITÄT

Inha	altliche Kompetenzen	Prozessbezogene	Kompetenzen		Unser Unterricht		Buch
	Kerncurriculum						
Stunder	 Pflichtergänzung • freiwillige Ergänzung 						
20	Stromkreise	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
1	Wirkungen des elektrischen Stroms	Wärmewirkung,			Demonstrationsexperimente zu den		27

STAND: OKTOBER 2020

Jahrgang 5

SEITE 8

					North Annual Michael Translation of the		
		magnetische Wirkung,			verschiedenen Wirkungen, Zuordnung der		
4	Einfache elektrische Stromkreise und deren Aufbau und Bestandteile	Lichtwirkung, etc. Planung und Durchführung einfacher Experimente		Bedeutung elektrischer Stromkreise im Alltag	verschiedenen Wirkungen zu Geräten heißer Draht, Morseapparat	Schülerkasten E- Lehre, Steckbretter,	8-10 11
1	Arten und Stärken von Spannungsquellen und Netzgeräten	Erkenntnis, dass nicht alle Geräte mit allen Spannungsquellen betrieben werden können; Umgang mit Spannungsangaben		Bewertung der Gefahren mit Spannungsquellen		Batterien, Apfelbatterie, Solarzelle, Thermoelement, Batterien, etc.	10 32-33
2	Schaltskizzen und Symbole	Idealisierung und Abstraktion des Versuchsaufbaus; Aufbau einfacher Stromkreise nach vorgegebenem Schaltplan	Benutzung von Schaltplänen als fachtypische Darstellung		Schalter zum Selbstbauen → Referat, Vortrag	CD, Kosmos	9-10
2	Leiter und Nichtleiter	Planung und Durchführung von Experimenten zur Untersuchung der Leitfähigkeit	Austausch der Erkenntnisse zur Leitfähigkeit		Leitfähigkeit prüfen, Apfelbatterie	Schülerübung	12-14
2	Kombination von Schaltern			Bedeutung el. Stromkreise im Alltag	Wechselschaltung, Umschaltung, Türklingel, Sicherheitsschaltung	Schülerübung	22-24
2	Reihen- und Parallelschaltung von Glühbirnen und deren Anwendungen	Durchführung von Experimenten	Dokumentation und Austausch der Ergebnisse	Bedeutung el. Stromkreise im Alltag	Glühlampen, Fahrrad, Elektrohaus		18-21
2	Elektromagnete, Klingel	Anwendung der Erkenntnisse über Stromkreise		Beschreibung von Aufbau und Funktionsweise einfacher technischer Geräte	Bau einfacher Geräte		42-47
2	Gefahren des elektrischen Stroms			Bewerten von Sicherheitsmaßnahmen am Beispiel Schutzdrahtes und Schmelzdrahtsicherung			27-29 34

STAND: OKTOBER 2020

JAHRGANG 5 SEITE 9

Klassenarbeiten: 1 pro Halbjahr (45 Minuten)

Leistungsbewertung: 40:60 (schriftliche Leistungen : mündliche Leistungen)

SEITE 10

JAHRGANG 7

JAHRGANG 7

Zentrales Ziel im Jahrgang 7 ist es, die Neugierde und Begeisterung der Schülerinnen und Schüler zu erhalten. Dies gelingt dadurch, dass das selbständige Arbeiten und Experimentieren weiter gefördert wird, die erlernten Inhalte möglichst vielfältig angewendet werden und das "Lernen durch Handeln" in den Vordergrund gestellt wird. Im Unterschied zum Jahrgang 5 sollen die Experimente in diesen Jahrgängen schon systematischer durchgeführt werden, auch die Auswertung mit Hilfe von Graphen erfolgt schon behutsam mit Hilfe einfacher mathematischer Methoden. Durch konkretisieren und physikalisches Interpretieren von Diagrammen und Gleichungen wird der Gefahr eines unverstandenen und inhaltsleeren Umgangs mit mathematischen Formeln entgegengewirkt. Der in Klasse 7 eingeführte Taschenrechner soll zur Analyse von Messdaten verwendet werden. Im sprachlichen Bereich wird in diesem Doppeljahrgang der Umgang mit der Fachsprache trainiert. Schülerinnen und Schüler sollen üben, zwischen Fachsprache und Alltagssprache zu trennen. Gruppen- und Projektarbeiten, insbesondere geeignete Schülerexperimente, sind unverzichtbar, um eigenständiges Erkunden, Problemlösen, Dokumentieren und Präsentieren zu fördern. Der Grad der Offenheit der Arbeitsaufträge soll dem Lernstand der Gruppe angepasst werden. Inhaltlich ist der Energiebegriff ein zentrales Thema, der sich auch im Themenbereich Elektrik durchgehend wiederfindet.

THEMENBEREICH: EINFÜHRUNG DES ENERGIEBEGRIFFS

Inha	Iltliche Kompetenzen	Prozessbezogene k	Kompetenzen		Unser Unterricht		Buch
Stunden Ergänzu							
10	Energie	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
1	Energie im Alltag Wozu wird Energie benötigt?	Einfacher Energiebegriff	Beschreiben Situationen des Alltags mit Hilfe des Energiebegriffs		Mindmap Collage mit Bildern	VDR-Materialien	10-11
4	Energieformen und deren Umwandlung Energiemessung verschiedener Energiearten	Energie kann in unterschiedlichen Formen auftreten, die ineinander umgewandelt werden können Elektrische Energie, innere Energie, Lageenergie Energie geht nicht verloren(Energieerhaltung), wenn man den Energiestrom in die Umgebung berücksichtigt	Vorgänge mit Hilfe von Energieübertraguns- ketten beschreiben	Energieumwandler benennen können Energieerhaltung gilt nur in abgeschlossenen Systemen	Stationen zu Energieformen Darstellung mit Energieflussdiagrammen Energieumwandlungsketten mit Karten legen und aufkleben Energiemessung mit dem "Stromzähler";	VDR-Materialien Geräte und Stationskarten in der Sammlung im Schrank 9.4 Kopiervorlage "Energiepuzzle"	14-19 40-41
2	1J als Einheit der Energie	Kenntnis typischer	Recherche im	Abschätzung des	Auswertung von Rechnungen, Arbeit mit	Energiemesser	

STAND: OKTOBER 2020

JAHRGANG 7 SEITE 11

		Größenordnungen	Internet und in eigenen Rechnungen	häuslichen Energiebedarfs und dessen Verteilung	den Energiemonitoren		
2	Energiestromstärke – die Leistung	Leistung als Maß der strömenden Energie		Beurteilung von Geräten nach deren Watt-Angaben	Untersuchung von Geräten im Haushalt mit Angabe der entsprechenden Leistungen;	Energiemonitor	
2	Leistung des eigenen Körpers	Leistungsgrenzen des Menschen		Anstrengung verschiedener Aktivitäten	Durchführung verschiedener Experimente: Treppenlaufen, Stuhlbesteigung, Klimmzüge, Kniebeugen	Lernstationen	
4	Energietransport und –speicherung	Energieversorgungssystem kennenlernen		Energieformen lassen sich unterschiedliche gut transportieren und speichern	Experimente zum Energietransport		44-49
2	Energie in unserer Nahrung	Energiebedarf des Menschen		Energiegehalt von Nahrung	Energieaufnahme von einem Tag ermitteln und bewerten	"Brennwerttabelle"	
2	Qualitative Energiebilanzen Kontenmodell zur Quantifizierung der Energie	Energie geht nicht verloren(Energieerhaltung), wenn man den Energiestrom in die Umgebung berücksichtigt		Energieerhaltung gilt nur in abgeschlossenen Systemen	Energiekonten bei verschiedenen Energieumwandlungen, z.B. Pendel, Flummi		
1	Zusammenfassung der Themen				Buch: Zusammenfassung + Aufgaben		52-55

THEMENBEREICH: ELEKTRIK (TEIL 1)

Inha Stunden Ergänzu		Prozessbezogene Kompetenzen			Unser Unterricht	Buch	
23		Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
4	Energieübertragung durch elektrische Stromkreise aus dem Alltag		Unterscheidung zwischen Fach- und Alltagssprache bei der Beschreibung entsprechender Phänomene	Erkennen die Bedeutung der Energieübertragung durch elektrische Stromkreise	Handgenerator, Fernübertragung von Energie durch Kabel, Stationenlernen	Stationen in der Sammlung vorhanden	121-123
4	Kostenrechnung:	E=P*t		Kritischer Umgang	Brainstorming, Internetrecherche,	Stromrechnung,	130-133

STAND: OKTOBER 2020

Jahrg.	ang 7		Gyiiiias	Stuffi v fluesi la	изст		SEITE 12
	"Energieverbrauch im Alltag" Energiesparten			mit elektrischer Energie	Referate	Stromverbrauch verschiedener Alltagsgeräte	
4	Elektrostatik: e in Metallen Kräfte zwischen geladenen Körpern	Modellvorstellung (Chemie)			Grundversuche zur Elektrostatik, Erläuterung von Gewitter, Kopierer	Influenzmaschine	98-111
2	Unterscheidung in einfachen Stromkreisen von Elektronen- und Energiestrom	Energieübertragung durch Kreisprozesse	Darstellung in Flussdiagrammen		Elektronenstrom fließt zwischen Quelle und Verbraucher hin und her; Energiestrom fließt nur von der Quelle zum Verbraucher	Dynamot	100-101
1	Elektrische Energiequellen	Nutzen moderner Energiequellen		Bewertung der verschiedenen Energiequellen	Generator, Batterie, Thermoelement, Solarzelle, Brennstoffzelle, etc.	Selbstbau dieser Energiequellen	122-123
1	Messbare Wirkungen des elektrischen Stroms			Welche Wirkung ist am Besten messbar?	Drehspulmessinstrument, Hitzdrahtmessinstrument,		113
2	Elektrische Stromstärke I deren Messung	Einheit und deren Festlegung	Erstellung einer Anleitung zum Gebrauch von Strommessgeräten	Bewertung typischer Größenordnungen	Training des Umgangs mit Strommessgeräten	Drehspulmessinstrumente, Schülerübung	112-113
4	Stromstärke und Energiestromstärke in Reihen- und Parallelschaltung	Experimentelle Untersuchung der Zusammenhänge	Graphische Auswertung der Messungen Angabe der Zusammenhänge mit Hilfe von Formeln	Vor- und Nachteile der Schaltungsarten	Schülerversuche; (Bedeutung der Sicherung im Haus)	Schülerübung; Dynamot Lernstationen mit den Handkurbeln	114-117 126-127
1	Zusammenfassung der Themen				Buch: Zusammenfassung + Aufgaben		124-125

Klassenarbeiten: 1 pro Halbjahr (bis 90 Minuten)

Leistungsbewertung: 40:60 (schriftliche Leistungen: mündliche Leistungen)

SEITE 13

Jahrgang 8

JAHRGANG 8

Themenbereich: Bewegung, Masse und Kraft

Inha	Itliche Kompetenzen	Prozessbezogen	e Kompetenzen		Unser Unterricht		Buch
Stunden	Kerncurriculum Pflichtergänzung						
39	Bewegung	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
3	t-s- Graphen t-v-Graphen bei gradlinigen Bewegungen	Daten durch Diagramme auswerten	Verwendung selbst gefertigter Diagramm und Messtabellen zur Dokumentation	Beschreibung von Bewegungen durch Messtabellen und Graphen	Ausgleichsgeraden und Regression mit dem GTR und von Hand Exp. S. 51 und 53	Arbeitsblätter, Handreichungen, Fahrbahn,	58-63
2	Bewegungsgleichungen für die gleichförmige Bewegung		Interpretieren von Geschwindigkeiten als Steigung		Anfertigen und Interpretieren von Diagrammen	Fahrrad	61, 63
2	Geschwindigkeitsänderung, Beschleunigung		Interpretieren von Beschleunigungen als Steigung (Bezüge zur Mathematik)		Anfertigen und Interpretieren von Diagrammen		84-85
2	Der freie Fall	Bestimmung der Erdbeschleunigung		Freie Fall mit und ohne Luftreibung	Training des Umgangs mit modernen Messwerterfassungstechniken Auswertung mit Hilfe einer Tabellenkalkulation	Fallgerät, Videoanalyse, Falleiter	
2	Lösung einfacher Aufgaben	Training im Umgang mit Formeln sowie deren Umstellung	Darstellung von Bewegungsabläufen mit Hilfe von Diagrammen	Austausch der gewonnen Erkenntnisse und deren Anwendung unter angemessener Verwendung der Fachsprache	Übungsaufgaben	Leifi	64
2	Wechselwirkungen	Wechselwirkungsgesetz (S. 74)			S. 67 E S. 69 E		80-81
2	Wirkungen von Kräften	Bewegungsänderung und Formänderung als Phänomene beschreiben und auf Kräfte zurückführen	Unterscheidung zwischen alltagssprachlicher und fachsprachlicher Beschreibung von		S. 77 E		66-67

STAND: OKTOBER 2020

Jahrgang 8

SEITE 14

			Phänomenen				
1	Messen von Kräften Maßeinheit Newton	Aufbau eines Kraftmessers			Durchführung von Versuchen zur Kraftmessung	Kraftmesser	68-69
4	Hookesches Gesetz	Führen Experimente zu proportionalen Zusammenhängen am Beispiel des Hookeschen Gesetzes durch	Hart/weich	Beurteilung der Gültigkeit des Gesetzes	s-F-Graph mit D als Steigung	Federn und Gummiband	82
2	Masse	Balkenwaage zum Vergleich von Massen [m]=1kg			Massen vergleichen mittels Normmassen	Balkenwaage	72-73
4	Gewichtskraft und Dichte	Ortsfaktor; Angabe der zugehörigen Größengleichungen und Durchführung von Berechnungen	Achten auf die korrekte Verwendung der Begriffe Masse und Gewicht.	Recherchieren Ortsfaktoren zu verschiedenen Planeten	Experiment zur Dichte und zur Bestimmung des Ortsfaktors		70-71 74-75 83
2	Darstellung von Kräften	Darstellung mit Hilfe von Pfeilen	Pfeilbilder	Länge, Angriffspunkt und Richtung; Wechsel zwischen sprachlicher und graphischer Darstellungsform	Interpretation von Bildern, in denen Kräfte auftreten		69
4	Zusammenwirkung und Zerlegung von Kräften - Kräfteparallelogramm	Kraft als gerichtete Größe, Vektoraddition			Kräfteparallelogramm	Spaghettibrücke	76-79
3	Unterscheidung zwischen Kräftepaaren bei der Wechselwirkung zwischen zwei Körpern und Kräftepaaren beim Kräftegleichgewicht an einem Körper	Kraft- und Gegenkraft; Kräftegleichgewicht		Nutzung der Kenntnisse, um alltagstypische Fehlvorstellungen zu korrigieren	Lösen von Paradoxien		
3	Trägheit und Masse				Experimente zur Trägheit		86-89
1	Zusammenfassung der Themen				Buch: Auf einen Blick!! Alles klar? Check-up		92-95

THEMENBEREICH: ELEKTRIK (TEIL 2)

In	haltliche Kompetenzen	Prozessbezogene Kompetenzen			Unser Unterricht		Buch
Stun	Kerncurriculum Pflichterganzung freiwillige Ergänzung						
13		Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite

STAND: OKTOBER 2020

JAHRGANG 8 SEITE 15

					T	I	
2	Spannung als Maß für die je Elektron übertragene Energie und deren Messung	Einheit und deren Festlegung; U=P/I	Erstellung einer Anleitung zum Gebrauch von Spannungsmessgerä- ten	Bewertung typischer Größenordnungen	Lernstationen		124-125
1	Unterscheidung zwischen Spannung einer Quelle und Spannung zwischen zwei Punkten eines Leiters (Potenzial)	Sachgerechte Experimente mit dem Voltmeter			Training des Anschluss der Messgeräte	Schülerübung	128
2	Strom und Spannung in Anwendungen				Muskeln, Herzschrittmacher, EKG, etc.		
2	Elektrischer Widerstand und ohmsches Gesetz	Aufnahme entsprechender Kennlinien; Auswertung mit Hilfe der Kenntnisse über proportionale Zusammenhänge	Dokumentation der Messergebnisse in Form geeigneter Diagramme	Unterscheidung zwischen der Definition des elektrischen Widerstands und dem ohmschen Gesetz; Grenzen des ohmschen Gesetzes	Schülerversuche zum elektrischen Widerstand von Verbrauchern; Bestimmung des elektrischen Widerstands von Drähten mit und ohne Kühlung;	Schülerübung	134-137
1	Wie entsteht der elektrische Widerstand?	Modellvorstellung zum elektrischen Widerstand	Anfertigung von Skizzen zur Erklärung	Einfluss der Temperatur auf den Widerstand	Theorie		
2	Verwendung der Größenbezeichnung R und dessen Einheit	Anwendung des ohmschen Gesetzes in einfachen Rechnungen	Korrekte Notation der Berechnungen, Umgang mit Einheiten		Vorhersage von Größen in elektrischen Stromkreisen	Übungsaufgaben	135
2	Widerstände in Reihen- und Parallelschaltung	Herleitung von Neuem aus Bekanntem			Deduktive Herleitung der entsprechenden Gesetze		138-141
2	Spannung in Reihen- und Parallelschaltung	Begründen die Knoten- und Maschenregel anhand einer Modellvorstellung	Veranschaulichung der Regeln durch geeignete Skizzen	Zweckmäßigkeit der elektrischen Schaltungen im Haushalt	Schülerversuche zu den Schaltungsarten		142
2	Schutzmaßnahmen im Stromnetz			Bewertung der verschiedenen Schutzmaßnahmen	Dreiadriges Kabel (Schutzleiter), Fl- Schalter, Sicherung		146-147
	Zusammenfassung der Themen		<u> </u>		Buch: Zusammenfassung + Aufgaben		148-151

Klassenarbeiten: 1 pro Halbjahr (bis 90 Minuten)

Leistungsbewertung: 40:60 (schriftliche Leistungen : mündliche Leistungen)

Jahrgang 9

SEITE 16

JAHRGANG 9

Themenbereich: Elektrik II (Halbleiter/Motor und Generator)

Inha	altliche Kompetenzen • Kerncurriculum • Pflichtergänzung • freiwillige	Prozessbezogene Kompetenzen			Unser Unterricht		Buch	
20	Halbleiter/Motor/Generator	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite	
4	Einfluss der Temperatur auf das Leitungsverhalten von Metallen (PTC), Leitfähigkeit eines NTC untersuchen	Ladungsträgermodell (Bezüge zur Chemie); grundlegende Halbleitereigenschaften	Protokolle erstellen	Grenzen des Modells erkennen; Erweiterung des Modells nötig	Kennlinien aufnehmen und auswerten; NTC im Schülerversuch untersuchen Demoexperiment: Leitfähigkeit eines glühenden Glasstabes	neue Schülerübung Mit Draht umwickelter Glasstab in der Sammlung	42-44	
2	Dotierte Halbleiter	n- und p-Dotierung	Recherche zum Dotierungsvorgang	Bedeutung im Alltag, Lichtschranke, Dämmerungsschalter	LDR im Schülerversuch		45	
2	p-n-Übergang Halbleiterdiode	"Ventileigenschaft" für elektrischen Strom am Beispiel der LED	Beschreiben den p-n- Übergang mit energetischen Betrachtungen		Schwellenspannung einer Diode bestimmen	Simulationen	46-47	
4	Leuchtdiode und Solarzelle	Aufnahme der Kennlinie einer Leuchtdiode	Beschreibung von Aufbau und Wirkungsweise von Leuchtdiode und Solarzelle	bewerten die Verwendung von Leuchtdiode und Solarzelle unter physikalischen, ökonomischen und ökologischen Aspekten	Verwendung der neuen Schülerübung Messungen mit den Solarkoffern für die Kennlinie	Solarkoffer	48-51	
3	Motor und Generator	Funktion der Energieumwandlung			Erklärung der Funktionsweise; Bau eines Elektromotors	Demomotor- und Generator, Dynamot, Bausatz	56-59	
2	Wechselspannung	Erzeugung mit dem Generator		Vor- und Nachteile der Wechselspannung	Darstellung der Wechselspannung mit dem Oszilloskop	Schüleroszilloskope	60-61	
2	Energieübertragung durch Hochspannung und Transformator	Funktionsweise eines Transformators und Induktion	Skizze zum Energieversorgungssystem	Übertragungsverluste in Leitern	Lichtbogen am Transformator, Induktionsversuche mit Spulen und Eisenkern		62-67	
1	Zusammenfassung der Themen				Buch: Das ist wichtig und Kennst du dich aus?		68-71	

JAHRGANG 9 SEITE 17

Themenbereich: Energie quantitativ I

Inha	Ittliche Kompetenzen • Kerncurriculum • Pflichtergänzung • freiwillige Ergänzung	Prozessbezogene Kompetenzen			Unser Unterricht		Buch
11	Energieübertragung	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
10	Energieerhaltungssatz der Mechanik Lösung einfacher Aufgaben und Probleme auch unter Einbeziehung der kinetischen Energie	planen einfache Experimente zur Überprüfung des Energieerhaltungs- satzes, führen diese durch und dokumentieren die Ergebnisse		nutzen ihr Wissen zum Bewerten von Risiken und Sicherheitsmaßnahmen im Straßenverkehr.	Versuche zur Energieerhaltung in abgeschlossenen Systemen, Energieverluste durch Reibung, Experimente mit dem GTR auswerten	Pendelversuch, Video "Haus im Kirchturm", Versuch zur Energie in einer Kugelschreiberfeder	12, 20-29
1	Zusammenfassung der Themen				Buch: Zusammenfassung + Kennst du dich aus?		30-33

Klassenarbeiten: 1 pro Halbjahr (90 Minuten)

Leistungsbewertung: 40:60 (schriftliche Leistungen : mündliche Leistungen)

JAHRGANG 10

SEITE 18

JAHRGANG 10

Themenbereich: Energie quantitativ II

	Ittliche Kompetenzen • Kerncurriculum	Prozessbezogene	e Kompetenzen	<u> </u>	Unser Unterricht		Buch
Stunden 9	Pflichtergänzung • freiwillige Ergänzung Energieübertragung	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
1	mechanische Energieübertragung (Arbeit) und thermische Energieübertragung	Experimentelle Untersuchung der Energieänderungen	Unterscheidung zwischen Umgangssprache und dem physikalischen Sprachgebrauch			neue Schülerübung	11
1	Temperatur und innere Energie unterscheiden	Temperatur als Maß für die mittlere Bewegungsenergie der Teilchen, innere Energie als Summe der Bewegungsenergie aller Teilchen	Entnehmen dazu Informationen aus Fachbuch und Formelsammlung		Versuch zur Energieerhöhung verschiedener Flüssigkeitsmengen und der zugehörigen Temperatur		13
2	Temperaturerhöhung erfordert Energiezufuhr	Bestimmung der Wärmekapazität		zeigen die besondere Bedeutung der spezifischen Wärmekapazität des Wassers an geeigneten Beispielen	Schülerexperimente zur Bestimmung der Wärmekapazität	Alte Schülerübung	14-15
4	Energie und Temperatur bei Phasenübergängen	Schmelz- und Verdampfungswärme, beschreiben einen Phasenübergang energetisch	Verwendung selbst gefertigter Diagramm und Messtabellen zur Dokumentation, Interpretieren ihre Ergebnisse und stellen diese vor	Nutzung von Phasenübergängen in Natur und Technik bewerten	Mischungsversuche, Verdampfen von Wasser mit dem Tauchsieder + Massebestimmung	Alte Schülerübung	16-19
1	Zusammenfassung der Themen				Buch: Zusammenfassung + Kennst du dich aus? – in Teilen nutzen		30-33

JAHRGANG 10 SEITE 19

Themenbereich: Atom- und Kernphysik

Stunder	altliche Kompetenzen • Kerncurriculum • Pflichtergänzung • freiwillige	Prozessbezogene Kompetenzen			Unser Unterricht		Buch
25	Atom- und Kernphysik	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
2	Größen von Atomen	Vorstellung der Größenordnung	Vergleiche durch Analogien	Möglichkeiten der Untersuchung solch kleiner Größen	Buch, Film, Analogien		
4	Aufbau des Atoms (Kern-Hülle- Modell), Kernkraft, Stabilität	deuten das Phänomen der Ionisation mit Hilfe dieses Modells	Bezüge zur Chemie		Rutherford-Versuch	Isotopentafel, Atommodelle, Simulationen	76-79
4	beschreiben die ionisierende Wirkung von Kernstrahlung und deren stochastischen Charakter geben ihre Kenntnisse über natürliche und künstliche Strahlungsquellen wieder	beschreiben biologische Wirkung und ausgewählte medizinische Anwendungen. Bezüge zu Biologie		Nutzen dieses Wissen zur Einschätzung möglicher Gefährdung durch Kernstrahlung	Funktion der Geiger-Müller-Zählrohrs, Messung von Nullraten	Schülerübung zur Kernphysik	80-81 98
4	unterscheiden α-, β-, γ- Strahlung anhand ihrer Eigenschaften und beschreiben ihre Entstehung. erläutern Strahlenschutzmaßnahmen mit Hilfe dieser Kenntnisse	beschreiben die Ähnlichkeit von UV-, Röntgen- und g – Strahlung in Analogie zum Licht und berücksichtigen dabei energetische Gesichtspunkte.		nutzen ihr Wissen zur Beurteilung von Strahlenschutzmaßnahmen Bezüge zu Biologie	Schülerexperimente zu den Strahlungsarten Experimente zu Reichweite und Abschirmung	Schülerübung zur Kernphysik	82-87 93,94, 99
4	beschreiben den radioaktiven Zerfall eines Stoffes unter Verwendung des Begriffes Halbwertszeit	stellen die Abklingkurve grafisch dar und werten sie unter Verwendung der Eigenschaften einer Exponentialfunktion aus Bezüge zu Mathematik			Würfelexperiment, Münzspiel, C14- Lotterie Bestimmung von Halbwertszeiten mit der Ionisationskammer, Bierschaumexperiment Verwendung einer Tabellenkalkulation	Würfel im Matheraum, Ionisationskammer	88-92

STAND: OKTOBER 2020

JAHRGANG 10 SEITE 20

4	unterscheiden Energiedosis und Äquivalentdosis geben die Einheit der Äquivalentdosis an	Umgang mit richtigen Einheiten	Vorträge zu Strahlenschäden	zeigen am Beispiel des Bewertungsfaktors die Grenzen physikalischer Sichtweisen auf			94-97
4	beschreiben die Kernspaltung und die Kettenreaktion erläutern die Funktionsweise eines Kernkraftwerks	Kernspaltung die lediglich der Wärmeerzeugung	recherchieren in geeigneten Quellen und präsentieren ihr Ergebnis sachgerecht	benennen die Auswirkungen der Entdeckung der Kernspaltung im gesellschaftlichen Zusammenhang u. zeigen dabei die Grenzen physikalischer Sichtweisen auf bewerten die Auswirkungen des Reaktorunfalls in Tschernobyl auf Europa	Simulationen, Bilder, Video zur Kernspaltung und zu Kernkraftwerken, (Mausefallenexperiment)	Hefte zur Kernenergie (auch als Klassensatz bestallbar)	100-105
1	Zusammenfassung der Themen				Buch: Zusammenfassung		106-109

Themenbereich: Thermodynamik

Inha Stunden	Ittliche Kompetenzen • Kerncurriculum • Pflichtergänzung • freiwillige Ergänzung	Prozessbezogene Kompetenzen			Unser Unterricht		Buch
23	Energie in Kreisprozessen	Erkenntnis	Kommunikation	Bewertung	Methoden, Experimente, Arbeitsformen	Material	Seite
4	Gasdrucks als Zustandsgröße Definitionsgleichung des Drucks Umgang mit dem Größensymbol p und die Einheit 1 Pascals	verwenden in diesem Zusammenhang das Teilchenmodell zur Lösung von Aufgaben und Problemen.	tauschen sich über Alltagserfahrungen im Zusammenhang mit Druck unter ungemessener Verwendung der Fachsprache aus	Bezüge zu Chemie	Schülerexperimente die den Luftdruck und die damit verbundene Kraft verdeutlichen	Gasflaschen, Druckgerät, hydraulischer Wagenheber, Magdeburger Halbkugeln, Vakuumpumpe	112-117
4	Ideales Gasgesetz inkl.	werten gewonnene	dokumentieren die		Versuche von Boyle-Mariotte und Gay-	Luftdruckgerät,	120-123

JAHRGANG 10

STAND: OKTOBER 2020

SEITE 21

	Anwendungen (Bezüge zu Chemie) Zweckmäßigkeit der Kelvin-Skala (Bezüge zu Chemie)	Daten durch geeignete Mathematisierung aus und beurteilen die Gültigkeit dieser Gesetze und ihrer Verallgemeinerung	Ergebnisse ihrer Arbeit und diskutieren sie unter physikalischen Gesichtspunkten		Lussac inkl. Auswertung mit Hilfe einer Tabellenkalkulation	Gasthermometer, evtl. Simulation	
4	Funktionsweise des Stirling- Motors Der ideale Stirling Kreisprozess im V-p-Diagramm	interpretieren einfache Arbeitsdiagramme und deuten eingeschlossene Flächen energetisch	argumentieren mit Hilfe vorgegebener Darstellungen		Versuche mit dem Stirling-Motor, evtl. Bau eines eigenen Motors	Stirling-Motoren, Simulationen	124-126
6	Energieentwertung, Wirkungsgrad Gleichung für den maximal möglichen Wirkungsgrad einer thermodynamischen Maschine	nutzen und verallgemeinern diese Kenntnisse zur Erläuterung der Energieentwertung und der Unmöglichkeit eines "Perpetuum mobile".		nehmen wertend Stellung zu Möglichkeiten nachhaltiger Energienutzung am Beispiel der "Kraft-Wärme-Kopplung" und begründen ihre Wertung auch quantitativ	Versuche zur Energieentwertung mit Flüssigkeiten	Wärmepumpe Kühlschrank	127-131
4	Wärmekraftwerk Kraft-Wärme-Kopplung	Erhöhung des Wirkungsgrads		Bewertung eigener Messungen	Durchführung von Messungen zum Wirkungsgrad eines Blockheizkraftwerks	Modellblockheiz- kraftwerks	132-137
1	Zusammenfassung der Themen				Buch: Zusammenfassung		138-141

Klassenarbeiten: 1 pro Halbjahr (90 Minuten)

Leistungsbewertung: 40:60 (schriftliche Leistungen : mündliche Leistungen)